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LETI'ER TO THE EDITOR 

Spiralling self -avoiding walks: an exact solution 

H W J Blote and H J Hilhorst 
Laboratorium voor Technische Natuurkunde, Postbus 5046, 2600 GA Delft, the Nether- 
lands 

Received 28 November 1983 

Abstract. An exact solution is presented to a problem of spiralling self-avoiding walks on 
the square lattice recently proposed by Privman. For N + 00, the number of N-step spiral 
walks increases as c, = 2-23-5'4~N-7/4 exp[2a( N/3)'/'], and their root-mean-square 
end-to-end distance behaves as R, = Jjn-' N '/* log N. 

In a recent letter Privman (1983) considers a new and interesting self-avoiding walk 
(SAW) problem. For this problem, defined on the square lattice, the bond angles are 
subject to a constraint: when the SAW is traversed in a given sense, then each bond 
may either point in the same direction as the preceeding one, or in a direction rotiated 
by + ~ / 2  with respect to it. The global behaviour that results from the combination 
of two local constraints (the excluded volume and the bond angle restrictions) is quite 
striking: in general a SAW obeying these constraints consists of an outward spiralling 
part and an inward spiralling part (figure 1). The question then arises to which 
universality class these spiralling SAWS belong. 

11 

Figure 1. ( a )  An outward spiralling SAW. The segment lengths are indicated. ( b )  In 
general, a spiralling SAW consists of an outward spiralling part and an inward spiralling 
part C. The dividing line (broken) intersects the dividing segment w. 

We shall let C, denote the total number of N-step walks and RN their root-mean- 
square end-to-end distance. By enumeration Privman (1983) obtained C, and RN for 
N s 40. Upon assuming that asymptotically 

CN - /LNNy-', RN-N" (1) 
(as for ordinary SAWS) this author estimated with the aid of series analysis techniques 
that 

/L = 1.15k0.15, y = 5.2* 1.3, v = 0.62 * 0.06. (2) 
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The estimates of the exponents y and v are well away from the usual two-dimensional 
SAW values y =E and v =: (Nienhuis 1982, 1984). However, the error margins are 
quite large for a series of this length. We have independently reproduced Privman's 
numbers and extended the series to 50 terms (table 1). Subsequent ratio analysis 
suggests that v may be less than 0.62, but the accuracy remains unsatisfactory. These 
circumstances have led us to attack the problem by analytical means. 

Table 1. Numerical data for spiral SAWS for 40 < N s 50: the number c, of N-step walks, 
and the sum of the squared end-to-end distances c,,R$. 

41 2444270 191 568 966 46 8106019 733 331 452 
42 3121064 252 134 740 47 10232851 950690811 
43 3977420 330 781 244 48 12 885 792 1 229 086 888 
44 5053839 432 606 792 49 16 196 772 1 584 784 532 
45 6409117 564 069 533 50 20 312 050 2 038 147 096 

Here we present an exact solution to the problem posed by Privman. We first 
solve the easier problem of the subclass of SAWS that only spiral outward (figure l ( a ) ) .  
For the quantities ch and RL referring to this subclass we find that for N+co 

RL - - $ / ? T - ' N ' / ~  log N. (4) 

K = exp( df) = 13.00195 

Here 

( 5 )  

is the same constant that appears in the famous problem of the number of partitions 
of an integer N, solved in a celebrated paper by Hardy and Ramanujan (1918) (see 
also Andrews (1976)). It also occurs in a specific lattice animal problem (Derrida 1983). 

Upon extending our solution to the full problem of all spiralling SAWS we obtain 

RN = &6.rr-' N ' I 2  log N. (7) 
The functional form of cN is clearly different from the one assumed in (1). The 
behaviour of R, is described by an exponent v = $ and a logarithmic correction factor. 
We shall first expose our method of solution, then comment on the differences between 
(5)-( 7) and (1)-( 2), and finally discuss why numerical analysis is unable to give accurate 
results even with a series as long as 50 terms. 

Our approach is to calculate the generating function 
m 

G ( z ) =  cNzN 
N = l  

for the full problem and the analogous quantity G ' ( z )  for the subclass of outward 
spiralling SAWS. These are just the partition functions of grand ensembles characterised 
by a step fugacity z. We begin by studying G ' ( z )  (see figure l (a)) .  A spiral can be 
decomposed into x and y segments, parallel to the x and y axes, respectively. We 
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adopt the convention that each spiral has its last (i.e. outermost) segment parallel to 
the x axis. We denote the segment lengths by the integers x,, x2,.  . . , xL+, and y l ,  
y2 ,  . . . , yL, as defined in figure 1( a) .  The above convention implies that 0 d x1 < x2 < 
. . . < XL, xL+l 2 1, and 1 4 y 1  < y2 <.  . . < yL (the case x1 = 0 corresponding to a walk 
that leaves its origin in the y direction). The generating function G’(z) is obtained 
as a sum over the segment lengths and over the number of segments, 

00 

G‘(z)  = c z ~ ’ + , , . + ~ L ’ I + Y ~ + . . . + Y L  (9) 
L = 0 0 4  XI < . . . < XL 1 s XL’ 1 1 4 y 1  <, . . < y L  

The sum over xL+l can be carried out directly, and the remaining sums (which are 
absent if L = 0 )  can all be decoupled by transformation to m, = x,, nl = y ,  and m k  = 
x k - x k - 1 ,  n k  = y k - y k - l  ( k  = 1, 2 , .  . . , L).  As a result we obtain for the generating 
function of the subclass of outward spiralling SAWS 

where go(z) = 1 and 

It is easy to show that the series in (10) has 1 as its radius of convergence. Our 
task then is to relate the z + 1 behaviour of G‘(z)  to the large N behaviour of c;V. 
We shall indicate only the principal steps of the calculation. First of all one notices 
that at fixed z the quantity gL(z) takes its maximum value for L = Lo(,?) where L o ( z )  
is the integer part of log ;/log z. For z = 1 - E and E + 0 the main contribution to the 
sum in (10) is expected to come from values L = Lo f (log 2 ) /  E .  Also, in this limit the 
two terms in brackets will contribute equally. As E + 0 we therefore have to leading 
order 

LO 

where Zlf=Lo+l stands for -Zf2L+l if L<Lo.  For small E the quantity log(z-’-1) 
varies only slowly near 1 = Lo. Hence the sums over 1 and L in (12) may be replaced 
by integrals, and the integral over L can be calculated, to leading order in E ,  by the 
steepest-descent method. This contributes a factor ( 7 r / 2 & ) ’ l 2 .  Furthermore, the sum 
in the prefactor in (12) is found to behave asymptotically as - r 2 / ( 1 2 & )  +$log(27r/~) + 
o( 1). Putting these results together we find, for z = 1 - E  and E + 0, 

G’(z)  = ( 2 7 r ~ ) - ’ / ~  exp(7r2/6c). (13) 
Next, asymptotic evaluation of the Laplace inverse 

(G’(z)/z”’) dz  

for large N yields (3). It is now easy to obtain from (13) the average chain length 
”(2) in the ensemble described by G’(z).  For E + 0 we have 

N’ (z )=d log  G’(z)/dlogz=7r2/6E2. (15) 
A second differentiation shows that the root-mean-square fluctuations AN‘( z )  satisfy 
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AN’/” - (N’)-1’4, i.e. the relative fluctuations are larger than in a usual statistical 
problem, but still vanish as N’ +W.  

The calculation of the root-mean-square end-to-end distance R’( z )  in the grand 
ensemble poses no problem of principle. The starting point is the expression for the 
squared end-to-end distance r: of a chain with a number L and y segments and a 
number L + 1 (or L, if xl = 0) of x segments, 

Once this expression has been inserted inside the summations of (9), the calculation 
of its average R ’ ( z )  is straightforward. It requires the asymptotic evaluation of several 
sums. We give the result for z = 1 - E with E + 0, 

(17) 

where y = 0.57722 is Euler’s constant. Correction terms to (17) are smaller than the 
leading ones by at least a factor E ,  apart from logarithms. Equation (4) follows by 
combining ( 1  5) and ( 1  7). 

We consider now the full problem of all spiralling SAWS (see figure l (b ) ) .  In order 
to write down their generating function G ( z )  we iiitroduce the concept of a dividing 
line. By this we shall mean a line parallel to the x or the y axis which intersects only 
a single segment of the walk. This segment will be called the dividing segment One 
easily sees the following properties. 

(i) Each spiralling SAW (of the general type figure l ( b ) )  has either one or two 
dividing lines. 

(ii) In the latter case the dividing segments are neighbouring segments. 
(iii) If a dividing segment is deleted, the result is two disjunct spirals to be called 

C and c. The spirals C or f? may be ‘empty’. For SAWS with two dividing segments 
two such decompositions are possible. 

The generating function G ( z )  is most easily calculated if one writes down summa- 
tions over the configurations C and separately, and inside this double summation 
a sum over all allowed lengths w of the dividing segment connecting C and c; w has 
a minimum value determined only by the outer segments of C and e. In this way, 
however, SAWS with two dividing segments are counted twice, and one must subtract 
a correction term. This term consists again of a double summation, say over C’ and c’, but now with an inner sum over the length of two dividing segments. In both the 
main term and the correction term the sums over the dividing segment(s) can be 
carried out and result in a decoupling of the remaining sums over the inward and 
outward spirals. We skip intermediate results and present our final expression for G (  z ) ,  

(18) 

R’( 2) = (2/ E 2 ) [ ( t  log(2/ E ) ) 2  -& 1 - y )  log(2/ E )  + 1 -+y  +ay2 +Qd] 

G( Z) = [z/( 1 - z)] + 2R( 2) +[( 1 - z ) ( ~ z  - l) /z2]R2( Z) 

where the function R(z) is defined as 

‘x 

f x z )  = c g L ( z ) [ g L ( Z ) + g L + 1 ( Z ) l  
L = l  

and related to the partition function G ’ ( z )  by 

t 20) a( Z) =[( 1 - z) /z ] [G ‘ (  2)- z/( 1 - z)’]. 
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We have checked that Taylor expansion of (18) correctly reproduces cI-clo. From 
(18) and (20) we see that for z = 1 - E and E + 0 

(21) G( z )  = E ~ (  G’( 2))’ .  

This shows the G(z )  also becomes singular at z = 1,  and hence we have p = 1 for this 
problem. Equation (21), together with the result (13) for G’(z) and after Laplace 
inversion, yields (6) for cN. In analogy to (15) 

N ( 2 )  = .n2/3E. (22) 

Finally, we have calculated the root-mean-square end-to-end distance in the full 

R ( ~ ) = ( 4 / ~ ~ ) [ ( $ 1 0 g ( 2 / ~ ) ) ~ - $ ( l - y )  log(2/~)-$y+a,’+6~’].  (23) 

From (22) and (23) one obtains, to leading order, equation ( 7 ) .  
Several comments are in place. First of all, the increase of cN and ch as exponentials 

of NI” (equations (3) and (6)) rather than of N (equation ( 1 ) )  becomes clear if one 
realises that the only effective degrees of freedom of a spiralling SAW are its turning 
points, of which there are -N”’. This may explain the difficulty of analysing even a 
series of 50 terms. We found that the coefficients C, for 1 G N S  40 are fitted better 
by Privman’s formulae, ( 1 )  and (2) ,  than by our exact asymptotic expression, ( 5 )  and 

A supplementary difficulty in analysing the series for RN is caused by the logarithms 
in (17).  If one defines an effective exponent as a function of N by vN = d log RN/d  log N, 
then this factor contributes an extremely slowly vanishing correction to the asymptotic 
value v = t :  

ensemble of spiralling SAWS. The result is, for z = 1 - E and E + 0, 

(6)! 

v ~ = $ + l / l o g  N+O(l/log’N).  (24) 
This shows clearly why performing a series analysis without any knowledge about the 
functional forms of C, and of RN did not give satisfactory results. 

Finally we remark that for this system not only the mean-square end-to-end distance 
but also all other pair and higher-order correlation functions can be calculated. We 
conclude that we are dealing with an exactly solvable yet non-trivial excluded volume 
problem. 

We would like to thank Dr B Derrida for calling our attention to the first three 
references. This research was supported in part by the ‘Stichting voor Fundamenteel 
Onderzoek der Materie’. 
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